
Blog (pt. 1)
Setting Rails Up

Ruby on Rails - Hack Club

Note: This is not the only thing you can do with Ruby on Rails, though it
might be one of the simplest. In fact, throughout this mini-project, you could
notice how much you could do with Ruby on Rails.

Blog

Review:
What is Ruby?

- High-level, general purpose programming language
- Useful in web development via Ruby on Rails, Sinatra, etc. (look them up!)

Why use Ruby on Rails?

- Organized, efficient way of storing data with cleanly designed web pages and
simple routing

- Gems - Ruby libraries (at least one exists to make what you want to create on
a Ruby on Rails website a lot more convenient)

Blog

Goal:
(Not a blog yet)

(Setting up the Ruby project)

Blog

Create a new Replit
https://replit.com/~

https://replit.com/~

Blog

Theoretical Stuff
Bare minimum for functionality:

(1) Controller
(a) Action

(2) View
(3) Route (URL)
(4) (Replit) Authentication “bypass”

Blog

Right after a Rails Project is created, a server can usually be started. However,
because Replit is stupid, it doesn’t work right away. Click “Run”. Below should be
something like what the output should be.

Starting a Server

Copy (Ctrl + C) the output line outlined by red.

Blog

Starting a Server
Open config/application.rb, and paste the line right below line 24.

Paste (Ctrl + V)

Blog

Starting a Server
Click “Run” again, and it should look like this.

Note: If it takes a while to re-run the server, it is most likely due to Replit’s lack
of bandwidth and editor quality.

Now that we got the server to successfully start, we won’t need to re-run it again.

We do want to create something to show when we reload the page though. We
will use something called resources.

Resources are an object created using Ruby on Rails that can be stored in a
database (an organized structure of data) and are a fundamental way of storing
and transmitting information on a Ruby on Rails website.

Example: Articles → could be stored in a database, contains attributes (e.g. name,
author, description, etc.)

You might know what we’re going to do with resources. Can you guess?

Blog

Resources Theoretical Stuff

Blog

Shell time! To create a resource, we need to use a rails command to generate a
controller, the resource’s backend. Click the shell tab on the right-side window and
type the following command:

bin/rails generate controller Posts

This will actually also generate a frontend (view) file which we will look at later. We
will first take a look at the controller file by navigating to

app/controllers/posts_controller.rb

Create a Resource: Post
Question: What is the difference
between backend and frontend?

The first page we will create will correspond to the index of the post resource,
which conventionally means the listing of all of its instances. An example of this is
a user profile on Instagram, where all of their post instances are listed. However,
this week, our index page will just say “Hello, world!”

We can create several pages that correspond to actions of the post resource, like
creating a new instance, reading (or showing) a specific instance, updating a
specific instance, or destroying a specific instance. These four actions make up
the acronym CRUD, the four fundamental operations of almost every web
application. Think of the analogy of Instagram and how these operations connect
to what you do on it.

Blog

Pages Theoretical Stuff

Setup:

(1) Define the index action in the controller and define data to send. This
function (backend) sends the web page (frontend) the necessary information
to list all the posts when triggered by a request from the server (whenever
someone goes onto the website). This week, we won’t send anything yet.

(2) Create the index.html.erb page. It is the frontend code that formats the
actual page. It is an embedded Ruby (erb) file, which means syntax exists to
implement Ruby.

Blog

Create an Index Page

(1) Defining index

In the controller ruby file, right after the first line, type in:

 def index
 end

Since we aren’t going to send any post data to the view yet, index won’t contain
anything.

Blog

Create an Index Page

We will also take a look at the views folder. In it will include a posts folder that
was created after generating the posts controller.

Right click the folder, click “Add file”,
and name it index.html.erb.

Click into the file and type in

<p>Hello world!</p>

Blog

Create an Index Page

Routes are important because they allow customized links/URLs of the website.

We need to set up the root of the website (homepage). We will
probably want to set it to the posts index page, so that in the
future it will show all the posts (even though it just shows “Hello
World” right now).

Head over to the config/routes.rb file and, after the first line,
type in

root ‘posts#index’

Blog

Routes

Click ‘Run’ again and this is what you should see:

Blog

Run

In the next part of this project (which will be uploaded onto the Hack Club
website), we will cover showing and creating actual posts, frontend and backend.

Visit the Hack Club Website at: https://wlhackclub.github.io/

Blog

See you Next Time!

https://wlhackclub.github.io/

