HANGMAN

CODEHS

e Go to CodeHs
e Create a new Java Sandbox Project

Start coding in the Sandbox

JS

Javascript

More

SETUP

e \We will be creating two classes
e Man class will be handling everything related to the hangman

e drawing of the hangman, and keeping track of
whether it's dead or alive

e Separating the code Into two classes to be easier

Fully Constructed “Hangman” will look like this:

MAN.JAVA

e Start by creating a file called Man.java file. Then, declare a class called
Man

New Sandbox Program

. &, MyProgram java
2. MyProgram_java =

1 public class MyProgram

e Public keyword so that our Man can be accessed by other classes too

MAN.JAVA
o | et's create some fields (variables specific to the class)

J
L

MAX_INCORRECT =

numIncorrect;
[] body;

e MAX_INCORRECT a constant, so we use the static and final modifiers to indicate
that it will remain the same for all instances of Man and never change

e numlncorrect is an integer that keeps track of the number of incorrect guesses.
e body is an Array of characters that stores the body parts of the hangman.

CONSTRUCTOR

e Constructor - a special method that is used to initialize objects
e Man Is 3 characters wide and 3 characters tall

e Create an array of characters of that size

e \n which represents a line break

I
L

// Instance variables
() {
// Initialize the Man object

body = [1 {" % °
numIncorrect = 9;

ISALIVE()

o At the bottom of your Man class, add:

numIncorrect < MAX INCORRECT;

e boolean - a data type that stores whether something is true or false

e return true or false, depending on whether or not the current number
of Incorrect guesses iIs less than the maximum allowed incorrect
guesses.

TOSTRING()

o At the bottom of your Man class, add:

e Java allows us to combine an array of characters and print them out
as a string using the built-in String class

() {
numIncorrect++:
(numIncorrect)q

HANG() pody

3

e we need to hang different parts of the man ,
according to how many incorrect guesses the budyt]
user has so far 3

e switch statement - Pass in a variable to the body[4]
switch statement, and then write specific ;
code for each of the different cases or '
possibilities of that variable, using the
keyword case

body| ¢ |

'
2

body[&]="/"
e \ alone is a special Java character. Have to add ;

an extra \ so that it prints out an actual -
backslash sz |

MAN TEST

e we're done with the Man class!
o At the bottom of your Man class, add:

] args) {

_MAX_INCORRECT; i++) {

[f

[

¥

=N

HANG()

e Change Man.Java to the main file & run
e You should see all the different stages of
the man being hanged before dying!

£, MyProgram_javi

> Man_java . -
|5

MyProgram.java Rename
Change to Main File |

Delete

gl

MAIN.JAVA

e For the game logic, all of our code will live inside the main method in the Main
class

e First off, we want to print a welcome message, just so people know they are
playing hangman

("Welcome to the ASCII Version of Hangman!");

e Change this file back to the main file

CONSOLE OBJECT

e Create a Console object and make that Console object read In a password

which hides the word when typing
e Store that password Into an Array of characters and convert each letter into

uppercase
e Use the letters array's length property (using .length) so that we can go

through each element of the array.

C = : ();

Il %

'] letters = c. ("Please enter a secret word: ");

1=0; 1<letters.length; 1++) {
letters|1] = : (letters|[i]);

IMPORTS

o let's quickly add two import statements at the top of our code
e need to Import Console and Scanner so that our program can use their
functionalities.

java.1io.

java.util.

DASHED LINE

e Need to create another Array of characters of same length as letters and
have all the letters be underscores with the help of a for loop
e add the following inside the Main class (beneath our previous for loop).

] puzzle = 'letters.length];

(i ; 1 < puzzle.length; i++)

puzzle[1i] = " ',

GAME LOOP

e Need to create a Man object to hang and a Scanner object to accept user

INnput for letters
o Add the following code right below our previous snippet.

GAME LOOP

How is Hangman played?

e SOomeone guesses a letter.

o Ifit's right, then you replace all the letters of the word that corresponds to
the correctly guessed letter. If it's wrong, then you hang the man once.

e Once all the letters are guessed, they win; otherwise, you win. We can
carry over this logic to Java and use a while loop.

e Each iteration of the while loop iIs a turn for the game, carrying out
different actions based on the guessed letter.

e The while loop should only be run when the man is alive, so we set our
condition to m.isAlive().

r PR r
|:,._ m] I:" _.'I _.'l 'L

//TODO: Add main game Logic here

PRINT GUESS SO FAR

e Create turns
e Prompt the user to enter In a character
e Show remaining character with underscore

("Puzzle to solve: ");
; 1 < puzzle.length; i++) {
(puzzle[i] + " ");

(); //Line of space

GUESS

How can we guess? What if someone types in a full word instead of a
letter?
e Use the scanner from earlier to receive user input

e Only accept first character of the letter

o .charAt(0) takes the first letter only

.out. ("Please guess a letter: ");

guess = s. ().

GUESS

e Check if the word contains user guess
e Declare a Boolean to check true or false

e containsGuess

o Set to false
o Go through letters(answer) & compare
o |If we find a match, then true! Replace underscore with letter

e Unmatched characters are still underscores

o =an containsGuess = ;
or (int i = 0; i < letters.length &% !containsGuess; i++) {

~ (letters[i] == guess) {

containsGuess =
_ |]

(i j = 0; j < letters.length; j++) {
. f (letters[j] == guess) puzzlel[j] = guess;

WRONG GUESS

e If no matching character is found, start hanging the man

e Can't just use hang() because this method is not in the Main class
e |[Nnstead, type m.hang().

e m Is from the new man we declared earlier.

e Make sure the print the hang man to see the progress

' f ('containsGuess) m. OF

(m) :

CHECK WINNER

How can we tell when the player has won?
e The word must be complete
o (loop through puzzle)

o |[fthere are no underscores -> Game complete!

e Boolean checkUnderscore turns to true if it encounters an underscore

checkUnderscore = -
j ; 1 < puzzle.length; i++) {

') checkUnderscore=

(I'checkUnderscore)

PRINT WINNER

e Write a print statement outside the while loop bracket

e |fthe man is alive, that means Player 2 has guessed correctly.

e |fthe man is dead, that means Player 2 failed to guess correctly, therefore
Player 1 wins

e Use simple if-else statmemnt to check conditions and print different

sentences

.out. ("Success! Player 2 wins!");

("Game over! Player 1 wins!");

FINISHED!

