
HANGMAN
W L H A C K C L U B

CODEHS
Go to CodeHs
Create a new Java Sandbox Project

We will be creating two classes
Man class will be handling everything related to the hangman

 Separating the code into two classes to be easier

Fully Constructed “Hangman” will look like this:

SETUP

 drawing of the hangman, and keeping track of
whether it’s dead or alive

Start by creating a file called Man.java file. Then, declare a class called
Man

MAN.JAVA

Public keyword so that our Man can be accessed by other classes too

Let’s create some fields (variables specific to the class)
MAN.JAVA

MAX_INCORRECT a constant, so we use the static and final modifiers to indicate
that it will remain the same for all instances of Man and never change

numIncorrect is an integer that keeps track of the number of incorrect guesses.
body is an Array of characters that stores the body parts of the hangman.

Constructor - a special method that is used to initialize objects
Man is 3 characters wide and 3 characters tall
create an array of characters of that size
\n which represents a line break

CONSTRUCTOR

At the bottom of your Man class, add:

boolean - a data type that stores whether something is true or false
return true or false, depending on whether or not the current number
of incorrect guesses is less than the maximum allowed incorrect
guesses.

ISALIVE()

At the bottom of your Man class, add:

 Java allows us to combine an array of characters and print them out
as a string using the built-in String class

TOSTRING()

we need to hang different parts of the man
according to how many incorrect guesses the
user has so far

switch statement - Pass in a variable to the
switch statement, and then write specific
code for each of the different cases or
possibilities of that variable, using the
keyword case

\ alone is a special Java character. Have to add
an extra \ so that it prints out an actual
backslash

HANG()

we’re done with the Man class!
At the bottom of your Man class, add:

MAN TEST

HANG()
Change Man.Java to the main file & run
You should see all the different stages of
the man being hanged before dying!

For the game logic, all of our code will live inside the main method in the Main
class
First off, we want to print a welcome message, just so people know they are
playing hangman

Change this file back to the main file

MAIN.JAVA

Create a Console object and make that Console object read in a password
which hides the word when typing
Store that password into an Array of characters and convert each letter into
uppercase
Use the letters array's length property (using .length) so that we can go
through each element of the array.

CONSOLE OBJECT

let’s quickly add two import statements at the top of our code
need to import Console and Scanner so that our program can use their
functionalities.

IMPORTS

need to create another Array of characters of same length as letters and
have all the letters be underscores with the help of a for loop
add the following inside the Main class (beneath our previous for loop).

DASHED LINE

Need to create a Man object to hang and a Scanner object to accept user
input for letters
Add the following code right below our previous snippet.

GAME LOOP

How is Hangman played?
Someone guesses a letter.
If it’s right, then you replace all the letters of the word that corresponds to
the correctly guessed letter. If it’s wrong, then you hang the man once.
Once all the letters are guessed, they win; otherwise, you win. We can
carry over this logic to Java and use a while loop.
Each iteration of the while loop is a turn for the game, carrying out
different actions based on the guessed letter.
The while loop should only be run when the man is alive, so we set our
condition to m.isAlive().

GAME LOOP

PRINT GUESS SO FAR
Create turns
Prompt the user to enter in a character
Show remaining character with underscore

GUESS
How can we guess? What if someone types in a full word instead of a
letter?

Use the scanner from earlier to receive user input

Only accept first character of the letter

.charAt(0) takes the first letter only

Check if the word contains user guess
Declare a Boolean to check true or false
containsGuess

Set to false
Go through letters(answer) & compare
If we find a match, then true! Replace underscore with letter

Unmatched characters are still underscores

GUESS

WRONG GUESS
If no matching character is found, start hanging the man
Can’t just use hang() because this method is not in the Main class
Instead, type m.hang().
m is from the new man we declared earlier.
Make sure the print the hang man to see the progress

CHECK WINNER
How can we tell when the player has won?

The word must be complete
(loop through puzzle)

If there are no underscores -> Game complete!

Boolean checkUnderscore turns to true if it encounters an underscore

PRINT WINNER
Write a print statement outside the while loop bracket

If the man is alive, that means Player 2 has guessed correctly.

If the man is dead, that means Player 2 failed to guess correctly, therefore

Player 1 wins

Use simple if-else statmemnt to check conditions and print different

sentences

FINISHED!

